Home
/
Blog
/
Tech Assessment
/
How football betting odds work using Poisson distribution

How football betting odds work using Poisson distribution

Author
Arpit Mishra
Calendar Icon
December 9, 2016
Timer Icon
6 min read
Share
Toward the end of the 19th century, Russia-born Polish economist, Ladislaus Bortkiewicz came up with a strategy to predict the incidence of deaths among Prussian soldiers from horse kicks.

And he did this how? He applied the Poisson distribution. It ended becoming a famous example by the way.

Fast forward a bit...

Poisson distribution can be used in many scenarios—importantly and interestingly in betting.

Sports betting is a global phenomenon, and it is estimated that this industry is worth between $700bn and $1tn globally.

And football betting is most popular among all sports.

But how does football betting odds work? how are football betting odds calculated?

It's difficult to believe that a simple mathematical equation - Poisson distribution is used to calculate the odds for a football match.

Betting on a team winning or losing is done based on the calculation explaining the sports betting across a globe.

What is 'Football betting odds' and how they define bets?

[caption id="attachment_5252" align="aligncenter" width="911"]Football betting odds, How are football betting odds calculated, Football betting explained using Poisson distribution, How football betting works ,Poisson distribution, How football betting is done, how is poisson equation used in football betting, Manchester united vs Manchester city, How do I bet on football, What are football odds Image Source: Bet365[/caption]

If you've ever tried placing a few pounds on your favorite team, you would have noticed these confusing numbers in front of you.

These numbers are called 'odds' and they define the probabilities of each possible outcome in an event.

The higher the value of these numbers, the less probable that particular event is.

Take the Real Madrid vs Roma match above as an example.

Since the probability of Madrid winning is higher, the odds against them winning is just 1.40. A draw, which is more unlikely, has odds of 4.75.

And the odds of a highly unlikely Roma win in 7.00.



How do these numbers impact your bet amount and their returns?

Simple. In the above example, if you bet 1 pound on a Real Madrid win and win the bet, you get back a total of 1.40 pounds (inclusive of the 1 pound that you originally bet).

Which is why winning bets on more unlikely events (like a Roma victory) gets you bigger returns.

In this case, you would have got back 7 pounds for every pound you bet on Roma if they ended up winning.

Let us now see how do bookmakers calculate football betting odds using a simple Poisson Distribution equation.

What is Poisson distribution?

“Poisson distribution is the probability of the number of events that occur in a given interval when the expected number of events is known and the events occur independently of one another.

For instance, suppose you sit in a park for a few days and count the number of people who come to the park in a black T-shirt.

Using Poisson distribution, you can guess if the number of people coming to the park on a specific day in a black t-shirt will be 10, 11, etc.

But how does it relate to football betting odds prediction?

If you are able to calculate the average attack and defense strength of the teams in a match over a certain period and calculate the Poisson distribution, you will be able to predict the odds of one team performing over other.

But if the data is too long the data would be irrelevant, and if it's short, outliers might skew the data.

This means that not only external factors like transfers, home, and away from ground affect the odds, but also the duration of events which need to be taken into consideration for calculation.

Let’s see how football betting odds work using Poisson distribution

Before we apply Poisson, we need to get some mathematical figures.

Let’s use this method to calculate the odds for the Manchester United vs. Manchester City matches to be played on February 26, 2017.

First, we need to find the attack and defense strength of these teams.

Calculating Average Attack and Defense for prediction

Before we identify a particular team strength and weakness, we need to find the average strength and weakness of all teams in the last playing season.

This can be calculated by dividing the total goals scored in particular season by a total number of games played in a particular season.
  • Number of Goals Scored at Home / Number of Games = 203/380 = 0.534
  • Number of Goals Scored Away / Number of Games = 158/380 = 0.415
The difference from the values above gives the “Attack intensity” of a team.

We will also need an average of goals conceded to know the weakness, which is simply the inverse of goals scored.

The average number of goals conceded at Home = 0.415

The average number of goals conceded away = 0.534

This gives us the “ Defense intensity” of a team.

Now that we have the average strength and weakness of the teams, let's take a look at the stats for Manchester United and Manchester City in 2015.

Based on these stats, we can calculate the Poisson distribution for the teams playing in February 2017, where Manchester United is the away team and Manchester City is the home team.

[caption id="attachment_5249" align="aligncenter" width="3509"]Football betting odds, How are football betting odds calculated, Football betting explained using Poisson distribution, How football betting works ,Poisson distribution, How football betting is done, how is poisson equation used in football betting, Manchester united vs Manchester city, How do I bet on football, What are football odds 2015 Statistics - Manchester United vs Manchester City[/caption]

Predicting Manchester United Goals

Let’s see the possibility of Manchester United scoring at Manchester City’s home ground.

Number of Goals scored away = 22/19 = 1.15

Manchester United Goals = Number of goals scored/Season’s average goals scored away = 1.36/0.415 = 2.77

Manchester City Defense at home

This is calculated by dividing the number of goals conceded at home in the last season by the home team by the number of away games, which is 1.105 ( (21/19).

Manchester City Goals = Number of goals conceded/ Season’s average goals conceded = 1.105/0.415 = 2.66

Manchester United’s Goals = Manchester United’s Attack? Manchester City Defense? Average Number of Goals = 3.05

Predicting Manchester City Goals

Manchester City Attack at Home

Manchester City = Number of Goals scored home - 47/19 = 2.47

Manchester City Goals = Number of goals scored/Average goals scored in the last season =2.47/0.534 = 4.62

Manchester United Defense away

Take the number of goals conceded away last season by the away team and divide by the number of away games, which is equal to 1.05 ((20/19).

Manchester United Goals = Number of goals conceded/Average goals conceded in the last season =1.05/0.534 =1.966

Manchester City’s Goals = Manchester City’s Attack? Manchester United’s Defense? Average No. Goals = 1.10

Once we have the averages of Manchester United’s goals and Manchester City’s goals, we can use them to calculate the Poisson distribution for a number of goals scored by a particular team . (various goals possibilities).

Poisson Distribution betting – Predicting multiple match outcomes

The formula for Poisson distribution is:

P(x; ?) = (e-?) (?x) / x!

e = Euler’s constant = 2.718

! = Factorial

x = number of successes of the event

µ = mean distribution of the event

It can be coded as follows
#include <stdio.h>

#include <math.h>
double factorial(int n) {
int fact = 1;
for (int i = 1; i<=n; i++) fact *= i;
return fact;
}
float poisson(int r, float mean) {
return (exp((-1) * mean) * pow(mean,r))/factorial(r);
}
int main(int argc, char const *argv[])
{
printf("%f\n", poisson(1, 1.10));
return 0;
}

You can also use the Poisson Distribution Calculator for such equations.

Poisson Distribution prediction for match the between Manchester United and Manchester City

Goals 0 1 2 3 4 5
Manchester United 4.73% 14.44% 22.02% 22.39% 17.07% 10.41%
Manchester City 33.28% 36.61% 20.13% 7.38% 2.03% 0.44%
Probability 1.5 5.28 4.43 1.65 0.34 0.23

The possibility that Manchester United and Manchester City would score 1 goal each is 14.44% and 36.61% respectively.


From the above distribution table we can see that the possibility of Manchester city scoring no goal is 4.73 and that of Manchester United is 33.28.

Scoring 2 goals, each for Manchester United and Manchester City is 22.02% and 20.13% respectively.

The possibilities decrease as the number of goals increases to 4 and 5 goals by the individual team.

Taking these number into consideration, the odds of Manchester City winning is high if the number of goals in a match is 0 or 1. But if Manchester United is able to score 2 goals it’s the probability of winning the match increases.

So how is football betting odds made?

Based on the number by distribution table and the probability of these goals in a match, it is clear that a 1-1 draw has the highest possibility of 5.28, followed by 4.43 for a 2-2 draw. But the possibility of Manchester City winning with 1-0 or 2-1 also looks great.

Based on the previous match at Old Trafford, which is the home ground to Manchester United, Manchester City won by 2-1.

Not taking any sides (I support Algorithm), I would put my bet on 1-0 or 1-1 draw in favor of Manchester City.

The disadvantage of using the Poisson equation is that it doesn’t take into consideration external factors like the players/coach changed in transfer windows, the home ground factor, and injured players.

It helps you calculate the distribution only based on the averages of previous occurrences.

But then Elihu Feustel is one such person who makes a million dollars by betting using mathematical algorithms.

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Arpit Mishra
Calendar Icon
December 9, 2016
Timer Icon
6 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

Vibe Coding: Shaping the Future of Software

A New Era of CodeVibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today,...

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.Systems Design, in its...

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

How Candidates Use Technology to Cheat in Online Technical Assessments

Impact of Online Assessments in Technical Hiring In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers. The ease and...

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo