Home
/
Blog
/
Developer Insights
/
8 Latest Artificial Intelligence Software (Apps) Challenging The Human Brain

8 Latest Artificial Intelligence Software (Apps) Challenging The Human Brain

Author
Team Machine Learning
Calendar Icon
March 15, 2017
Timer Icon
6 min read
Share

Introduction

“In the past 2,000 years, the hardware in our brains has not improved… In the next 30 years, AI will overtake human intelligence,” says Softbank CEO Masayoshi Son.

If you’ve read Ray Kurzweil’s “The Singularity is Near: When Humans Transcend Biology,” you’d expect that AI is going to exhibit human-level intelligence in a decade or two. The startlingly thought-provoking work by the futurist gives you a fair picture of the road ahead, a time when humans, with the aid of advanced technologies, will “transcend their biological limitations.”

And you know what? This plausible scenario is at our doorstep. With superintelligence on the brink of becoming a reality, his words ring true, although they are downright scary. Computers and their growing abilities are likely to outpace our skills sooner than we think. $16 trillion will be added to the global economy by 2030, thanks to artificial intelligence.

Terms like artificial intelligence and machine learning have been bandied about for a while now. Despite the groundbreaking strides, in terms of intuition, vision, common sense, and language, there are miles to cover. Machines can’t still beat us at everything we do, but they’ve surely have outsmarted us in some ways.

This post talks about some amazing artificial intelligence software that are just so smart.

Latest Artificial Intelligence Software

1. Deep Mind’s AlphaGo

In 2016, AlphaGo was in the news for beating the 9-Dan top player Lee Sedol at Go. According to Wikipedia, the ancient Chinese game of Go is “an abstract strategy board game for two players, in which the aim is to surround more territory than the opponent.”

Watch this2 minute video:

The AI software from Google beat the South Korean grandmaster in a five-game match, winning 4­–1. Brute-force calculations will not work with this complex game. It needed much more.

AlphaGo used deep neural networks and advanced tree search to win. “AlphaGo learned to discover new strategies for itself, by playing millions of games between its neural networks, against themselves, and gradually improving,” said David Silver, Go team’s main programmer. Of the two artificial networks used, the policy network predicted the next move and the value network evaluated the winner of every position on the board.

The team used the Google Cloud Platform for the massive computing power it needed. With advanced machine learning techniques, such as reinforcement learning, and fantastic engineering skills, DeepMind did much better than expected. The cyborg had to figure out how to win, and not just know how to mimic human moves.

This highly publicized event marked the beginning of a new era. Considering the magic of Moves 37 and 78, it was more a case of a human and machine than human against machine. This outcome has immense possibilities. Like computer scientist Andy Salerno says, “AlphaGo isn’t a mysterious beast from some distant unknown planet. AlphaGo is us. AlphaGo is our incessant curiosity. AlphaGo is our drive to push ourselves beyond what we thought possible.” You can read more here.

2. DeepStack

Quite like Go, Poker fell to the magic of AI as well. In a hands-on no-limit Texas hold’em game, DeepStack beat pro poker players. The algorithm had a staggering 450 milli big blinds per game when a professional player typically has a win rate of 50 milli big blinds per game. This is quite an achievement considering this version of poker has 10160 paths that are possible for each hand!

DeepStack is based more on “intuition” than on working out the moves ahead of time. The algorithm makes real-time decisions by computing fewer possibilities in a matter of seconds.

In their paper, a team of researchers from the Czech Technical University and Charles University in the Czech Republic and the University of Alberta in Canada, talks about the winning AI algorithm DeepStack, which “combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning.” A team from Carnegie Mellon has also developed another winning AI software called Libratus. However, game theory won’t hold for multi-player games.

This approach has important implications in other fields that have imperfect information such as medicine, finance, cybersecurity, and defense.

Machine learning challenge, ML challenge

3. AI Duet

An artificial “pianist” from Google’s Creative Lab, AI Duet was built in collaboration with Yotam Mann, developer/musician. Watch this short video and see it working:

In this video, he tells you how this AI software works using the concept of neural networks. This interactive experiment is part of Magenta, an open-source project from Google’s Google Brain unit. You can access the code here.AI Duet is built with Tone.js, TensorFlow, and other Magenta tools.

Who needs a partner when this virtual piano player will accompany you in a lilting duet!

Even if you are no Chopin, this intelligent software will respond to you and create a rhythm. It could even inspire you. It is not going to get you ready for a concert in Boston Symphony Hall, you could have some real fun hitting random notes and waiting for the computer to come back with something improvisational based on melodies it has been trained on.

4. COIN

It looks like artificial intelligence is revolutionizing investment banking. JPMorgan’s software COIN, which is an acronym for contract intelligence, has worked magic by “interpreting commercial loan agreements” in seconds, a task that previously cost 360,000 man hours.

COIN is based on machine learning concepts. The software is naturally less error-prone while checking loan-servicing agreements. A Bloomberg report said that JPMorgan is keen on “deploying the technology which learns by ingesting data to identify patterns and relationships. The bank plans to use it for other types of complex legal filings like credit-default swaps and custody agreements. Someday, the firm may use it to help interpret regulations and analyze corporate communications.”

The company believes that it is only the start of smart automation of processes in the financial industry. JP Morgan is committed to new initiatives. “We’re willing to invest to stay ahead of the curve, even if in the final analysis some of that money will go to product or a service that wasn’t needed,” said Marianne Lake, the finance chief.

5. LipNet

Lip reading has become so easy with University of Oxford’s Department of Computer Science’s AI software, LipNet. The team of researchers have detailed it in the paper titled Lipnet: End-to-end sentence-level lipreading.

The paper says, LipNet “maps a variable-length sequence of video frames to text, making use of spatiotemporal convolutions, a recurrent network, and the connectionist temporal classification loss, trained entirely end-to-end.”

Watch this short interesting video:

When you compare this neural network-based software to human lip readers where the accuracy is 12.3%, it has an accuracy of 46.8% while annotating video footage. “All existing [lip-reading approaches] perform only word classification, not sentence-level sequence prediction…. To the best of our knowledge, LipNet is the first lip-reading model to operate at sentence-level,” say the researchers. AI will soon be able to transcribe footage that has a low frame rate and poor image quality sooner than we think.

Apart from the immense help it will be to people who suffer from disabling hearing loss, the team is also interested in its practical possibilities such as “silent dictation in public spaces, covert conversations, speech recognition in noisy environments, biometric identification, and silent-movie processing.”

6. Philip

For those who fear the dark side of AI, this new “killer” program is just another factor reinforcing their misgivings. MIT’s Computer Science and Artificial Intelligence Laboratory has come up with “Philip,” who is out for blood in the popular Super Smash Bros Melee multiplayer video game.

It is based on neural networks and is an “in-game computer player that learned everything from scratch.” The team led by Vlad Firou fed the vicious AI coordinates of the gameplay objects. In their deep reinforcement learning technique, the computer played itself repeatedly in Nintendo’s popular console game.

The team used algorithms such as Actor-Critic and Q Learning to beat 10 top-ranked human players. Philip bested the players with a reaction time of 33 milliseconds and being 6 times faster than humans.

You can read the research paper here.

7. DeepCoder

Cambridge University and Microsoft have come up with deep learning-based software, called DeepCoder, that can write code on its own. “The approach is to train a neural network to predict properties of the program that generated the outputs from the inputs. We use the neural network’s predictions to augment search techniques from the programming languages community, including enumerative search and an SMT-based solver,” says the team in its research paper.

They used a domain-specific language to teach the system to solve online programming challenges involving 3 to 6 lines of code. The system practices and figures out what code combinations work best. Using program synthesis, DeepCoder puts together pieces of code from software that already exists just like a programmer would.

One of the researchers Marc Brockschmidt says, “We’re targeting the people who can’t or don’t want to code, but can specify what their problem is.”

8. GoogLeNet

A deep learning AI system from Google can detect cancer with better accuracy and speed than pathologists. Identifying tumors scanning images can be error-prone and laborious.

Here’s a video tutorial on learning about googlenet in detail:

Google says, “After additional customization, including training networks to examine the image at different magnifications (much like what a pathologist does), we showed that it was possible to train a model that either matched or exceeded the performance of a pathologist who had unlimited time to examine the slides.”

“We present a framework to automatically detect and localise tumours as small as 100 × 100 pixels in gigapixel microscopy images sized 100,000×100,000 pixels. Our method leverages a convolutional neural network (CNN) architecture and obtains state-of-the-art results on the Camelyon16 dataset in the challenging lesion-level tumour detection task,” writes Google’s team in its white paper.

Google will continue its research, working on larger datasets, to improve patient outcomes.

Summary

New possibilities and advances in artificial intelligence are pushing the boundaries of the human brain like never before. The brilliant artificial intelligence programs outlined in this post is only a glimpse into a terrifying future. If these trends continue, scientists believe that machines could surpass human capabilities sooner than later. But there really is no reason for mass hysteria as of now argues the other camp. Only time will tell, right?

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Team Machine Learning
Calendar Icon
March 15, 2017
Timer Icon
6 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

Vibe Coding: Shaping the Future of Software

A New Era of CodeVibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today,...

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.Systems Design, in its...

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

How Candidates Use Technology to Cheat in Online Technical Assessments

Impact of Online Assessments in Technical Hiring In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers. The ease and...

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo