Home
/
Blog
/
Developer Insights
/
Tower of Hanoi recursion game algorithm explained

Tower of Hanoi recursion game algorithm explained

Author
Arpit Mishra
Calendar Icon
December 26, 2016
Timer Icon
7 min read
Share

Tower of Hanoi game is a puzzle invented by French mathematician Édouard Lucas in 1883.

History of Tower of Hanoi

There is a story about an ancient temple in India (Some say it’s in Vietnam – hence the name Hanoi) has a large room with three towers surrounded by 64 golden disks.

These disks are continuously moved by priests in the temple. According to a prophecy, when the last move of the puzzle is completed the world will end.

These priests acting on the prophecy, follow the immutable rule by Lord Brahma of moving these disk one at a time.

Hence this puzzle is often called Tower of Brahma puzzle.

Tower of Hanoi is one of the classic problems to look at if you want to learn recursion.

It is good to understand how recursive solutions are arrived at and how parameters for this recursion are implemented.

What is the game of Tower of Hanoi?

Tower of Hanoi consists of three pegs or towers with n disks placed one over the other.

The objective of the puzzle is to move the stack to another peg following these simple rules.

  1. Only one disk can be moved at a time.
  2. No disk can be placed on top of the smaller disk.

Before we proceed, let’s understand Recursion –

What is Recursion?

When a function calls itself, it’s called Recursion.

It will be easier for those who have seen the movie Inception.

Leonardo had a dream, in that dream he had another dream, in that dream he had yet another dream, and that goes on.

So it’s like there is a function called dream()dream(), and we are just calling it in itself.

function dream()
    print "Dreaming"
    dream()

Recursion is useful in solving problems which can be broken down into smaller problems of the same kind.

But when it comes to solving problems using Recursion there are several things to be taken care of.

Let’s take a simple example and try to understand those.

Following is the pseudo code of finding the factorial of a given number XX using recursion.

function factorial(x)
    if x is 0                    // base case
        return 1
    return x*factorial(x-1)       // break into smaller problem(s)

Detailed explanation to Recursion can be found – Here

Tower of Hanoi algorithm explained

Let’s try to solve a puzzle – Tower of Hanoi using recursion.

Take an example with 2 disks: Disk 1 on top of Disk 2 at peg A. The target is to move both these disks to peg B.

Looks simple, Right!

Move Disk 1 from peg A to peg C. Then move disk 2 from peg A to peg B and, finally, move disk 1 from peg C to peg B.

This solution takes 3 steps.

You can easily move this stack from peg B to any other peg using these 3 steps.

But what if we have 3 disks – 1,2, and 3 stacked in peg A.

To move the stack to peg B you would have to expose disk 3 and to do that disk 1 and 2 have to be moved to peg C.

So by ensuring that you do not break the rules, using the above subsets of 3 steps in the previous case, you would move disk 1 and 2 to peg C, leaving disk 3 exposed with no disk above it.

https://www.hackerearth.com/blog/become-better-developer

Now to solve the problem, recursively move disk 3 from peg A to peg B.

Then disk 1 from peg C to peg A. After which disk 2 can be moved above disk 3 at peg B.

The puzzle is finally completed by moving disk 1 from peg A over disk 2 and 3 at peg B.


Would you like to get updates once a month on our latest articles? We won’t spam, we promise. Subscribe now to The HackerEarth Blog!


What if you have 4 disks?

  • Recursively solve the problem of moving disk 1,2, and 3 from peg A to peg C
  • Move disk 4 from A to C
  • Recursively solve the problem of moving disk 1,2 and 3 from peg C to peg B

Eventually, you figure out that there is some pattern to the puzzle and with each increment in disks, the pattern could be followed recursively.

While the 3-disk puzzle required 7 steps. 4-disk requires 7+1+7 = 15 steps to be solved.

Check the GIF here for 4 disks

  • Create a function Tower with int ‘a’ – for number of disks, char ‘from’ – for from peg, char ‘aux’ – for a secondary peg, char ‘to’ – for destination peg
  • Put ‘if’ loop
  • If (a=1) i.e. if number of disk = 1, move it from ‘initial peg’ to the ‘destination peg’
  • Else, call function tower for ‘a-1’ i.e. the number of disk -1, recall function tower for n-1 disk and move it ‘from’ to ‘to’
  • Recall function again using recursion until an or number of the disk is 1.
void tower(int a,char from,char aux,char to){
    if(a==1){
       cout<<"\t\tMove disc 1 from "<<from<<" to "<<to<<"\n";
       return;
    }
    else{
       tower(a-1,from,to,aux);
       cout<<"\t\tMove disc "<<a<<" from "<<from<<" to "<<to<<"\n";
       tower(a-1,aux,from,to);
    }
}

Call the function ‘tower’ in the main program

void main(){
     clrscr();
     int n;
     cout<<"\n\t\t*****Tower of Hanoi*****\n";
     cout<<"\t\tEnter number of discs : ";
     cin>>n;
     cout<<"\n\n";
     tower(n,'A','B','C');
     getch();
}

Tower of Hanoi maths explained

By now, you might have identified that to move N disks from one peg to another, you need 2N1.

So, the number of steps almost double every time you insert another disk in the stack.

Let us prove that the number of steps in 2N1

The question is what is the minimum number of moves(aN) required to move all the Ndisks to another peg.

Let’s look at a recursive solution

One can already see that a1=1,a2=3,a3)=7 and so on.

For a given N number of disks, the way to accomplish the task in a minimum number of steps is:

  1. Move the top N1 disks to an intermediate peg.
  2. Move the bottom disk to the destination peg.
  3. Finally, move the N1 disks from the intermediate peg to the destination peg.

Therefore, the recurrence relation for this puzzle would become:

a1=1,a2=3;aN=2aN1+1;N2

Tower of hanoi, recursion, algorithm , explained, Tower of hanoi explained, Recursion explained

Now one can solve this relation in an iteration as follows-

Tower of hanoi recursion explained, Tower of Hanoi, Tower of Hanoi recursion, Recursion explained, Tower of Hanoi explain

But what about the prophecy for the tower of Hanoi where the priests are using 64 disks?

Suppose that these priests are highly powerful and can move these massive disks at a speed of 1 per second per hour every day.

At this speed, they would need 2^64 -1 move to complete the task.

That is, 18,446,744,073,709,551,615 moves to complete, which would take about 580 billion years.

Considering our Milky Way is about 13.21 billion years old and our planet is only 5 billion years old, that is a lot of time for the prophecy to be true.

Tower of Hanoi dynamic programming problem

Now that you have understood the algorithm and reasoning behind the Tower of Hanoi problem, it’s time to take up a small assessment to test your understanding of the Tower of Hanoi

Tower of Hanoi recursion sample problem in C++

Tower of Hanoi is a common dynamic programming problem used in various competitive programming challenges.

Here is one such question from HackerEarth Challenge

Q. Bob and Alice like to play the game Tower of Hanoi. One day Alice challenges Bob to build the tallest tower from a set of disks of different height and radius. The Tower of Hanoi can be built by stacking disks on top of each other. To put disk A on top of disk B, the radius and height of A must be strictly smaller than those of B. Help Bob win the challenge.

Here is the Tower of Hanoi program using C++

#include <bits/stdc++.h>
#define lli long long
using namespace std;
lli dp[202];
int main()
{
  int t,n;
   lli x,y;
   cin >> t;
   assert(t<=10);
   while ( t-- ) {
      cin >> n;
     assert(n<=200);
       vector < pair<lli,lli> > v;
       for ( int i = 0; i < n; i++ ) {
           cin >> x >> y;
           assert(x<=1000000000);
           assert(y<=1000000000);
           v.push_back(make_pair(x,y));
       }
       sort(v.begin(),v.end());
       dp[0] = v[0].second;
       lli ans = v[0].second;
       for ( int i = 1; i < n; i++ ) {
           dp[i] = v[i].second;
           for ( int j = 0; j < i; j++ ) {
               if ( v[i].second > v[j].second && v[i].first > v[j].first ) dp[i] = max(dp[i], dp[j]+v[i].second);
         }
  ans = max(ans, dp[i]);
       }
       cout << ans << endl;
   }
   return 0;
}

Time to end the world on a doomsday or by Tower of Hanoi all can be calculated by mathematics.

Mathematics holds the solution for most of the complex problems, from football betting to banking.

Practice and learn more such algorithms and on CodeMonk and participate in HackerEarth challenges.

Subscribe now for more such article on Algorithms.

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Arpit Mishra
Calendar Icon
December 26, 2016
Timer Icon
7 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

The Mobile Dev Hiring Landscape Just Changed

Revolutionizing Mobile Talent Hiring: The HackerEarth AdvantageThe demand for mobile applications is exploding, but finding and verifying developers with proven, real-world skills is more difficult than ever. Traditional assessment methods often fall short, failing to replicate the complexities of modern mobile development.Introducing a New Era in Mobile AssessmentAt HackerEarth, we're...

Revolutionizing Mobile Talent Hiring: The HackerEarth Advantage

The demand for mobile applications is exploding, but finding and verifying developers with proven, real-world skills is more difficult than ever. Traditional assessment methods often fall short, failing to replicate the complexities of modern mobile development.

Introducing a New Era in Mobile Assessment

At HackerEarth, we're closing this critical gap with two groundbreaking features, seamlessly integrated into our Full Stack IDE:

Article content

Now, assess mobile developers in their true native environment. Our enhanced Full Stack questions now offer full support for both Java and Kotlin, the core languages powering the Android ecosystem. This allows you to evaluate candidates on authentic, real-world app development skills, moving beyond theoretical knowledge to practical application.

Article content

Say goodbye to setup drama and tool-switching. Candidates can now build, test, and debug Android and React Native applications directly within the browser-based IDE. This seamless, in-browser experience provides a true-to-life evaluation, saving valuable time for both candidates and your hiring team.

Assess the Skills That Truly Matter

With native Android support, your assessments can now delve into a candidate's ability to write clean, efficient, and functional code in the languages professional developers use daily. Kotlin's rapid adoption makes proficiency in it a key indicator of a forward-thinking candidate ready for modern mobile development.

Breakup of Mobile development skills ~95% of mobile app dev happens through Java and Kotlin
This chart illustrates the importance of assessing proficiency in both modern (Kotlin) and established (Java) codebases.

Streamlining Your Assessment Workflow

The integrated mobile emulator fundamentally transforms the assessment process. By eliminating the friction of fragmented toolchains and complex local setups, we enable a faster, more effective evaluation and a superior candidate experience.

Old Fragmented Way vs. The New, Integrated Way
Visualize the stark difference: Our streamlined workflow removes technical hurdles, allowing candidates to focus purely on demonstrating their coding and problem-solving abilities.

Quantifiable Impact on Hiring Success

A seamless and authentic assessment environment isn't just a convenience, it's a powerful catalyst for efficiency and better hiring outcomes. By removing technical barriers, candidates can focus entirely on demonstrating their skills, leading to faster submissions and higher-quality signals for your recruiters and hiring managers.

A Better Experience for Everyone

Our new features are meticulously designed to benefit the entire hiring ecosystem:

For Recruiters & Hiring Managers:

  • Accurately assess real-world development skills.
  • Gain deeper insights into candidate proficiency.
  • Hire with greater confidence and speed.
  • Reduce candidate drop-off from technical friction.

For Candidates:

  • Enjoy a seamless, efficient assessment experience.
  • No need to switch between different tools or manage complex setups.
  • Focus purely on showcasing skills, not environment configurations.
  • Work in a powerful, professional-grade IDE.

Unlock a New Era of Mobile Talent Assessment

Stop guessing and start hiring the best mobile developers with confidence. Explore how HackerEarth can transform your tech recruiting.

Vibe Coding: Shaping the Future of Software

A New Era of CodeVibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today,...

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.Systems Design, in its...

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo