Home
/
Blog
/
Tech Tutorials
/
5 Free Python IDE for Machine Learning

5 Free Python IDE for Machine Learning

Author
Rashmi Jain
Calendar Icon
December 22, 2016
Timer Icon
7 min read
Share

Integrated Development Environment (IDE)

An integrated development environment is an application which provides programmers and developers with basic tools to write and test software. In general, an IDE consists of an editor, a compiler (or interpreter), and a debugger which can be accessed through a graphic user interface (GUI).

According to Wikipedia, “Python is a widely used high-level, general-purpose, interpreted, dynamic programming language.” Python is a fairly old and a very popular language. It is open source and is used for web and Internet development (with frameworks such as Django, Flask, etc.), scientific and numeric computing (with the help of libraries such as NumPy, SciPy, etc.), software development, and much more.

Text editors are not enough for building large systems which require integrating modules and libraries and a good IDE is required.

Here is a list of some Python IDEs with their features to help you decide a suitable IDE for your machine learning problem.

JuPyter/IPython Notebook

Project Jupyter started as a derivative of IPython in 2014 to support scientific computing and interactive data science across all programming languages.

IPython Notebook says that “IPython 3.x was the last monolithic release of IPython. As of IPython 4.0, the language-agnostic parts of the project: the notebook format, message protocol, qtconsole, notebook web application, etc. have moved to new projects under the name Jupyter. IPython itself is focused on interactive Python, part of which is providing a Python kernel for Jupyter.”

Jupyter constitutes of three components - notebook web applications, kernels, and notebook documents.

Some of its key features are the following:
  1. It is open source.
  2. It can support up to 40 languages, and it includes languages popular for data science such as Python, R, Scala, Julia, etc.
  3. It allows one to create and share the documents with equations, visualization and most importantly live codes.
  4. There are interactive widgets from which code can produce outputs such as videos, images, and LaTeX. Not only this, interactive widgets can be used to visualize and manipulate data in real-time.
  5. It has got Big Data integration where one can take advantage of Big Data tools, such as Apache Spark, from Scala, Python, and R. One can explore the same data with libraries such as pandas, scikit-learn, ggplot2, dplyr, etc.
  6. The Markdown markup language can provide commentary for the code, that is, one can save logic and thought process inside the notebook and not in the comments section as in Python.
Jupyter- Python IDE

Some of the uses of Jupyter notebook includes data cleaning, data transformation, statistical modelling, and machine learning.

Some of the features specific to machine learning are that it has been integrated with libraries like matplotlib, NumPy, and Pandas. Another major feature of the Jupyter notebook is that it can display plots that are the output of running code cells.

It is currently used by popular companies such as Google, Microsoft, IBM, etc. and educational institutions such as UC Berkeley and Michigan State University.

Free download: Click here.

Machine learning challenge, ML challenge

PyCharm

PyCharm is a Python IDE developed by JetBrains, a software company based in Prague, Czech Republic. Its beta version was released in July 2010 and version 1.0 came three months later in October 2010.

PyCharm is a fully featured, professional Python IDE that comes in two versions: PyCharm Community Edition, which is free, and a much more advanced PyCharm Professional Edition, which comes as a 30-day free trial.

The fact that PyCharm is used by many big companies such as HP, Pinterest, Twitter, Symantec, Groupon, etc. proves its popularity.

Some of its key features are the following:
  1. It includes creative code completion for classes, objects and keywords, auto-indentation and code formatting, and customizable code snippets and formats.
  2. It shows on-the-fly error highlighting (displays error as you type). It also contains PEP-8 for Python that helps in writing neat codes that are easy to support for other languages.
  3. It has features for serving fast and safe refactoring.
  4. It includes a debugger for Python and JavaScript with a graphical UI. One can create and run tests with a GUI-based test runner and coding assistance.
  5. It has a quick documentation/definition view where one can see the documentation or object definition in the place without losing the context. Also, the documentation provided by JetBrains (here) is comprehensive, with video tutorials.
PyCharm- Python IDE

The most important feature that makes it fit for machine learning is its support for libraries such as Scikit-Learn, Matplotlib, NumPy, and Pandas.

There are features like Matplotlib interactive mode which work both in Python and debugger console where one can plot, manage, and explore the graphs in real time.

Also, one can define different environments (Python 2.7; Python 3.5; virtual environments) based on individual projects.

Free download: Click here

Spyder

Spyder stands for Scientific PYthon Development EnviRonment. Spyder’s original author is Pierre Raybaut, and it was officially released on October 18, 2009. Spyder is written in Python.

Some of its key features are the following:
  1. It is open source.
  2. Its editor supports code introspection/analysis features, code completion, horizontal and vertical splitting, and goto definition.
  3. It comes with Python and IPython consoles workspace, and it supports debugging runtime, i.e., as soon as you type it will display the errors.
  4. It has got a documentation viewer where it shows documentation related to classes or functions called either in editor or console.
  5. It also supports variable explorer where one can explore and edit the variables that are created during the execution of file from a graphic user interface like Numpy array ones.
Spyder- Python IDE

It integrates NumPy, Scipy, Matplotlib, and other scientific libraries. Spyder is best when used as an interactive console for building and testing numeric and scientific applications and scripts built on libraries such as NumPy, SciPy, and Matplotlib.

Apart from this, it is a simple and light-weight software which is easy to install and has very detailed documentation.

Rodeo

Rodeo is a Python IDE that's built expressly for doing machine learning and data science in Python. It was developed by Yhat. It uses IPython kernel.

Some of its key features are the following:
  1. It makes it easy to explore, compare, and interact with data frames and plots.
  2. The Rodeo text editor comes with auto-completion, syntax highlighting, and built-in IPython support so that writing code gets faster.
  3. Rodeo comes integrated with Python tutorials. It also includes cheat sheets for quick material reference.
Rodeo- Python IDE

It is useful for the researchers and scientists who are used to working in R and RStudio IDE.

It has many features similar to Spyder, but it lacks many features such as code analysis, PEP 8, etc. Maybe Rodeo will come up with new features in future as it is fairly new.

Free download: Click here.

Geany

Geany is a Python IDE originally written by Enrico Tröger in C and C++. It was initially released on October 19, 2005. It is a small and lightweight IDE (14 MB for windows) which is as capable as any other IDE.

Some of its key features are the following:
  1. Its editor supports syntax highlighting and line numbering.
  2. It also comes with features like auto-completion, auto closing of braces, auto closing of HTML, and XML tags.
  3. It includes code folding and code navigation.
  4. One can build systems to compile and execute the code with the help of external codes.
Geany-Python IDE

Free download: Click here.

For those who are familiar with RStudio and want to look for options in Python, RStudio has included editor support for Python, XML, YAML, SQL, and shell scripts in edition 0.98.932, which was released on June 18 2014, although there is a little support for Python as compared to R.

This is not an exhaustive list. There are other Python IDEs such as PyDev, Eric, Wing, etc. To know about more them, you can go to the Python wiki page here.

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Rashmi Jain
Calendar Icon
December 22, 2016
Timer Icon
7 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

Vibe Coding: Shaping the Future of Software

A New Era of CodeVibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today,...

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing code.

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.Systems Design, in its...

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

How Candidates Use Technology to Cheat in Online Technical Assessments

Impact of Online Assessments in Technical Hiring In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers. The ease and...

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo