Sheldon has many balls of white and black colors. One day, he was playing with them. During the play, he arranged the balls into two rows both consisting of N number of balls. These two rows of balls are given to you in the form of strings X, Y. Both these string consist of 'W' and 'B', where 'W' denotes a white colored ball and 'B' a black colored.
Other than these two rows of balls, Sheldon has an infinite supply of extra balls of each color. He wants to create another row of N balls, Z in such a way that the sum of hamming distance between X and Z, and hamming distance between Y and Z is maximized.
Hamming Distance between two strings X and Y is defined as the number of positions where the color of balls in row X differs from the row Y ball at that position. e.g. hamming distance between "WBB", "BWB" is 2, as at position 1 and 2, corresponding colors in the two strings differ.
. As there can be multiple such arrangements of row Z, Sheldon wants you to find the lexicographically smallest arrangement which will maximize the above value.
Input
The description of T test cases follows:
Output
Constraints
Subtasks