SOLVE
LATER
Consider a polynomial function \(f(x)\) with integer coefficients: \(a_0 + a_1 \cdot x + ... + a_n \cdot x^n\). Lets define \(superBig = 10000^{10000^{10000}}\). Someone really wants to know \(sgn(f(superBig))\) and \(sgn(f(-superBig))\). Please, help him to find the sign of these values. Note that \(a_n\) can be zero.
Read more about sgn function on https://en.wikipedia.org/wiki/Sign_function.
Input format
The first line contains single integer n (\(0 \leq n \leq 3 \cdot 10^5\)).
The second line contains \(n+1\) space separated integers \(a_i\) (\(-10^{18} \leq a_i \leq 10^{18}\)) - the coefficients of polynomial.
Output format
Print two space separated integers \(sgn(f(superBig))\) and \(sgn(f(-superBig))\).
Note that these values can be only 1, 0 or 1.