SOLVE

LATER

Polynomial sign

/

Consider a polynomial function \(f(x)\) with integer coefficients: \(a_0 + a_1 \cdot x + ... + a_n \cdot x^n\). Lets define \(superBig = 10000^{10000^{10000}}\). Someone really wants to know \(sgn(f(superBig))\) and \(sgn(f(-superBig))\). Please, help him to find the sign of these values. Note that \(a_n\) can be zero.

Read more about sgn function on https://en.wikipedia.org/wiki/Sign_function.

**Input format**

The first line contains single integer *n* (\(0 \leq n \leq 3 \cdot 10^5\)).

The second line contains \(n+1\) space separated integers \(a_i\) (\(-10^{18} \leq a_i \leq 10^{18}\)) - the coefficients of polynomial.

**Output format**

Print two space separated integers \(sgn(f(superBig))\) and \(sgn(f(-superBig))\).

Note that these values can be only *1*, *0* or *1*.

Explanation

- \(sgn(f(superBig)) =sgn(superBig - 100) = 1\), \(superBig - 100 > 0\)
- \(sgn(f(-superBig)) =sgn(-superBig - 100) = -1\), \(-superBig - 100 < 0\)

Time Limit:
1.0 sec(s)
for each input file.

Memory Limit:
512 MB

Source Limit:
1024 KB