12b. A 100-L beaker contains 10 kg of salt. Pure water is added at the constant...
A tank contains 90 kg of salt and 2000 L of water. Pure water enters a tank at the rate 10 L/min. The solution is mixed and drains from the tank at the rate 13 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt = y(0) -
A tank contains 90 kg of salt and 2000 L of water. Pure water enters a tank at the rate 6 L / min. The solution is mixed and drains from the tank at the rate 8 L / min.Let y be the number of kg of salt in the tank after t minutes.The differential equation for this situation would be:dy/dt=y(0)=
(1 point) A tank contains 70 kg of salt and 1000 L of water. Pure water enters a tank at the rate 6 L/min. The solution is mixed and drains from the tank at the rate 3 L/min. (a) What is the amount of salt in the tank initially? amount = !!! (kg) (b) Find the amount of salt in the tank after 3 hours. amount = (kg) (c) Find the concentration of salt in the solution in the tank...
(1 pt) A tank contains 50 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 4 L/min. (a) What is the amount of salt in the tank initially? amount 50 (kg) (b) Find the amount of salt in the tank after 1 hours. (kg) amount (c) Find the concentration of salt in the solution in the tank as time...
(2 points) A tank contains 80 kg of salt and 1000 L of water. Pure water enters a tank at the rate 12 L/min. The solution is mixed and drains from the tank at the rate 6 L/min. (a) What is the amount of salt in the tank initially? amount = (kg) (b) Find the amount of salt in the tank after 4.5 hours. amount = (kg) (c) Find the concentration of salt in the solution in the tank as...
a tank contains 60 kg of salt and 2000 L of water. pure water enters at 6L/min the solution is mixed and drains at 9L/min y=kg of salt after t minutes. dy/dt=??? and y(0)=???
A tank contains 3,000 L of brine with 12 kg of dissolved salt. Pure water enters the tank at a rate of 30 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? y kg (b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.) У kg Need Help? Read It Watch It Master It...
Only need answer for b.). Please show your work! A tank contains 70 kg of salt and 1000 L of water. Pure water enters a tank at the rate 10 L/min. The solution is mixed and drains from the tank at the rate 5 L/min (a) What is the amount of salt in the tank initially? Preview (kg) amount-70 Find the amount of salt in the tank after 1.5 hours. * Preview (kg) amount - 69.47696384 (c) Find the concentration...
A tank contains 15,000 L of brine with 23 kg of dissolved salt. Pure water enters the tank at a rate of 150 L / min. The solution is kept thoroughly mixed and drains from the tank at the same rate.Exereise (a)How much salt is in the tank after t minutes?Exercise (b)How much salt is in the tank after 10 minutes?
(2 pts) A 150 L tank contains 100 L of pure water. Brine that contains 0.1 kg of salt/L enters the tank at 5 L/min. The solution is kept thoroughly mixed and drains from the tank at the rate of 4 L/min. Find the concentration of the salt in the tank at the moment it is full. (2 pts) Separate variables and use partial fractions to solve the following initial value problem. da T = x (- 1), x(0) =...