SOLVE

LATER

Shubham and Subarrays

/

You are given an array consisting of *n* integer numbers \(a_1,a_2..a_n\). Two subarrays \([l_1
\space r_1]\) (\(1\le l_1\le r_1\le n\)) and \([l_2 \space r_2]\) (\(1\le l_2\le r_2\le n\)) are considered the same if they have the same "special set" of numbers. Output the number of distinct subarrays.

Note: A "special set" of numbers is a set of unique numbers sorted in increasing order.For example,the "special set" corresponding to the numbers [\(5,2,7,2,5,9\)] is [\(2,5,7,9\)].

**Input Format**

First line contains *n* denoting the number of array elements.

Second line contains *n* integers denoting \(a_1,a_2..a_n\)

**Output Format**

Output the required answer.

**Constraints**

\(1\le n\le 1000\)

\(1\le a_i\le 1000 \)

Explanation

Special Set of numbers in subarray [1 1]: {1}

Special Set of numbers in subarray [2 2]: {1}

Special Set of numbers in subarray [3 3]: {2}

Special Set of numbers in subarray [1 2]: {1}

Special Set of numbers in subarray [1 3]: {1,2}

Special Set of numbers in subarray [2 3]: {1,2}

Thus the number of distinct subarrays are 3.

Time Limit:
1.0 sec(s)
for each input file.

Memory Limit:
256 MB

Source Limit:
1024 KB

Initializing Code Editor...