Non-empty subsets

2.4

25 votes
Arrays, Data Structures, 1-D
Problem

You are given an array \(A\) consisting of \(N\) non-negative integers. Find out the minimum number \(K\) such that there exists a non-empty subset of \(A\) for which the bitwise OR of all its elements is equal to \(K\).

Input format

  • The first line contains an integer \(T\) (\(1 \leq T \leq 1000\)) denoting the number of test cases.
  • The first line of each test case contains an integer \(N (1 \leq N \leq 2 \times 10^5)\) denoting the number of elements in array \(A\).
  • The second line of each test case contains \(N\) space-separated integers of array \(A(0 \leq A_i \lt 2^{31})\).

Note: It is guaranteed that sum of \(N\) over all test cases is less than or equal to \(2 \times 10^5\).

Output format

For each test case, print a line containing the minimum possible value of \(K\).

Constraints

\(1 \leq T \leq 1000\)

\(1 \leq N \leq 2 \times 10^5\)

\(0 \leq A_i < 2^{31} \)

Sum of \(N\) over all test cases is less than or equal to \(2 \times 10^5\)

Sample Input
2
4
1 3 5 7
3
2 6 14
Sample Output
1
2
Time Limit: 1
Memory Limit: 256
Source Limit:
Editor Image

?