SOLVE
LATER
You are given an array consisting of n integers \(a_1,a_2,..a_n\). Find the maximum value of xor of sum of 2 disjoint subarrays i.e maximize ( sum(\(l_1,r_1\)) xor sum(\(l_2,r_2\)) )
where \(1\le l_1\le r_1 \) < \(l_2\le r_2\le n\).
Note: sum(l,r) denotes sum of elements from indices l to r both inclusive.
Input Format
First line contains number n denoting the number of array elements.
Second line contains n integers denoting \(a_1,a_2,..a_n\).
Output Format
Output the required value.
Constraints
\(1\le n\le 900 \)
\(1\le a_i\le 100 \)
The optimal values of \(l1,r1,l2,r2\) are 1,2,3,4.
Sum(1,2) = 1 + 2 = 3
Sum(3,4) = 1 + 3 = 4
Sum(1,2) xor Sum(3,4) = 7.
Note that you cannot get a value greater than 7.