SOLVE

LATER

Shubham and Subarray Xor

/

You are given an array consisting of *n* integers \(a_1,a_2,..a_n\). Find the maximum value of xor of sum of 2 disjoint subarrays i.e maximize ( sum(\(l_1,r_1\)) xor sum(\(l_2,r_2\)) )

where \(1\le l_1\le r_1 \) < \(l_2\le r_2\le n\).

Note: sum(l,r) denotes sum of elements from indices *l* to *r* both inclusive.

**Input Format**

First line contains number *n* denoting the number of array elements.

Second line contains n integers denoting \(a_1,a_2,..a_n\).

**Output Format**

Output the required value.

**Constraints**

\(1\le n\le 900 \)

\(1\le a_i\le 100 \)

Explanation

The optimal values of \(l1,r1,l2,r2\) are 1,2,3,4.

Sum(1,2) = 1 + 2 = 3

Sum(3,4) = 1 + 3 = 4

Sum(1,2) xor Sum(3,4) = 7.

Note that you cannot get a value greater than 7.

Time Limit:
1.0 sec(s)
for each input file.

Memory Limit:
257 MB

Source Limit:
1024 KB

Initializing Code Editor...