Minimum AND xor OR

0

0 votes
Arrays, Data Structures, Operators, Sorting, 1-D
Problem

Given an array \(A\) of \(N\) integers. Find out the minimum value of the following expression for all valid \(i,j\).

\((A_i \ and \ A_j) \ xor \ (A_i \ or \ A_j)\), where \(i \ne j\).

Video approach to solve this question: here

Input format

  • First line: A single integer \(T\) denoting the number of test cases
  • For each test case:
    • First line contains a single integer \(N\), denoting the size of the array.
    • Second line contains \(N\) space separated integers \(A_1,A_2,...,A_n\)

Output format

For each test case, print a single line containing one integer that represents the minimum value of the given expression

Constraints

\(1 \le T \le 10^3\\ 1 \le N \le 10^5\\ 0 \le A_i \le 10^9\)

Note: Sum of \(N\) overall test cases does not exceed \(10^6\)

Time Limit: 1
Memory Limit: 256
Source Limit:
Explanation

For test case #1, we can select elements \(2\) and \(3\), the value of the expression is \((2 \ and \ 3) \ xor \ (2 \ or \ 3) = 1\), which is the minimum possible value. Another possible pair is 4 and 5.

For test case #2, we can select elements 4 and 7, the value of the expression is \((4 \ and \ 7) \ xor \ (4 \ or \ 7) = 3\), which is the minimum possible value.

Editor Image

?