You are given an array consisting of n integers \(a_1,a_2,..a_n\). Find the maximum value of xor of sum of 2 disjoint subarrays i.e maximize ( sum(\(l_1,r_1\)) xor sum(\(l_2,r_2\)) )
where \(1\le l_1\le r_1 \) < \(l_2\le r_2\le n\).
Note: sum(l,r) denotes sum of elements from indices l to r both inclusive.
Input Format
First line contains number n denoting the number of array elements.
Second line contains n integers denoting \(a_1,a_2,..a_n\).
Output Format
Output the required value.
Constraints
\(1\le n\le 900 \)
\(1\le a_i\le 100 \)
The optimal values of \(l1,r1,l2,r2\) are 1,2,3,4.
Sum(1,2) = 1 + 2 = 3
Sum(3,4) = 1 + 3 = 4
Sum(1,2) xor Sum(3,4) = 7.
Note that you cannot get a value greater than 7.
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor
Login to unlock the editorial
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor