Given an array A of length N, find the number of non empty sub-arrays such that sum of all the elements in the sub-array is a palindrome. In other words, you have to find number of pairs \((i,\;j)\) such that \(\sum_{x=i}^j A_x\) is a palindrome where \((1 \le i \le j \le N)\).
Input Format:
First line contains an integer, N \((1 \le N \le 5 * 10^5)\). Second line contains N space separated integers, \(A_i\) \((1 \le A_i \le 2 * 10^6)\), elements of the array A. The sum of all the elements in the array is in the range \([1, 2 * 10^6]\).
Output Format:
Print an integer, number of non empty sub-arrays such that sum of all the elements in the sub-array is a palindrome.
The 3 sub-arrays are \((10,\;1)\), 1 and 3.
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor
Login to unlock the editorial
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor