*Statement:*

**N = n _{0} * MOD^{0} + n_{1} * MOD^{1} + … + n_{m-1} * MOD^{m-1}**

**K = k _{0} * MOD^{0} + k_{1} * MOD^{1} + … + k_{m-1} * MOD^{m-1}**

**C(N, K)** is Binomial coefficient (number of ways to choose **K** elements from a set of **N** elements).

*Conditions:* **MOD** is a prime number (look at the end of the article to know what can we do with not prime **MOD**), and you should be able to calculate **C(n _{i}, k_{i}) % MOD**, where

*Advices:* this theorem is very useful in case **N ≥ MOD**, otherwise it's better to use formula **C(N, K) = N! / ((N - K)! * K!)** and tricks #2 or #3 from there. If **N ≥ MOD** then **N! % MOD = 0**, when **C(N, K) % MOD** is not necessary equals to **0**.

*Realization:* let's see how can we get representation of some number **N** in the scale of notation with base **MOD**:

```
vector<int> getRepresentation(int N) {
vector<int> res;
while (N > 0) {
res.push_back(N % MOD);
N /= MOD;
}
return res;
}
```

Let **n** will be representation of **N** and **k** will be representation of **K**. They are not necessary have the same length. If **K > N** we can easily say that **C(N, K) = 0**. Otherwise **k** has less or equal length than **n**. To make them the same length we can add some extra zeroes to **k** and make them both of length of **n**, or we can take only some first elements of **n** and make them both of length of **k**. The second way has more sense because **C(n _{i}, 0) = 1**.

So the main part of code looks like:

```
vector<int> n = getRepresentation(N);
vector<int> k = getRepresentation(K);
long long res = 1;
for (int i = 0; i < k.size(); ++i) {
res = (res * C(n[i], k[i])) % MOD;
}
```

Let's talk about function **C(n[i], k[i])** in more detail. It's easy to see that **(0 ≤ n[i], k[i] < MOD)**, so we can use formula **C(N, K) = N! / ((N - K)! * K!)** and trick #3 from there:

```
int C(int N, int K) {
if (K > N) {
return 0;
}
return (((fact[N] * binpow(fact[N - K], MOD - 2)) % MOD) * binpow(fact[K], MOD - 2)) % MOD;
}
```

Let's precalc all possible factorials modulo **MOD** and store them in the array **fact**:

```
long long fact[MOD];
fact[0] = 1;
for (int i = 1; i < MOD; ++i) {
fact[i] = (fact[i - 1] * i) % MOD;
}
```

Function **binpow** is just Fast exponentation, it can calculate **A ^{N} % MOD** in

```
int binpow(int a, int n) {
long long res = 1;
while (n > 0) {
if (n % 2 != 0) {
res = (res * a) % MOD;
}
a = ((long long)a * a) % MOD;
n /= 2;
}
return (int)res;
}
```

If **n[i]** and **k[i]** are small enough instead of using formulas and tricks we can just precalc Pascal's triangle and then get **C(n[i], k[i])** in **O(1)**:

```
int C[MOD][MOD];
for (int i = 0; i < MOD; ++i) {
for (int j = 0; j <= i; ++j) {
if (i == 0 || j == 0) {
C[i][j] = 1;
} else {
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
}
}
}
```

*Trick with not prime MOD:* let's factorize **MOD = mod _{1}^{q1} * mod_{2}^{q2} * … * mod_{m}^{qm}** and calculate

*Statement:*

Author

{"928a12c": "/users/pagelets/trending_card/?sensual=True"}