# Latex equations

January 4, 2017
< 1 minute
$$\displaystyle P(Y=1|X)=\frac{\mbox{e}^{(\beta_o+\beta_1x)}}{\mbox{e}^{(\beta_o+\beta_1x)}+1}$$

$$\displaystyle p=\frac{\mbox{e}^{(\beta_o+\beta_1x)}}{\mbox{e}^{(\beta_o+\beta_1x)}+1}$$

$$\implies \displaystyle p(\mbox{e}^{(\beta_o+\beta_1x)}+1)=\mbox{e}^{(\beta_o+\beta_1x)}$$

$$\implies\displaystyle p.\mbox{e}^{(\beta_o+\beta_1x)}+p=\mbox{e}^{(\beta_o+\beta_1x)}$$

$$\implies\displaystyle p=\mbox{e}^{(\beta_o+\beta_1x)}-p.\mbox{e}^{(\beta_o+\beta_1x)}$$

$$\implies\displaystyle p=\mbox{e}^{(\beta_o+\beta_1x)}(1-p)$$

$$\implies\displaystyle\frac{p}{1-p}=\mbox{e}^{(\beta_o+\beta_1x)}$$

$$\implies\displaystyle \mbox{ln}\left(\frac{p}{1-p}\right)=\beta_0+\beta_1x$$
•
•
•
•
•

### About the Author

I am trained to be a mathematician. I love teaching and music. When I am not at work you will find me cooking.

### Want to stay ahead of the technology curve?

#### Subscribe to our Developers blog

Yes, I would like to receive the latest information on emerging technology trends, as well as relevant marketing communication about hackathons, events and challenges. By signing up you agree to our Terms of service and Privacy policy.